Lesson 291: PreAnesthetic Assessment of the Patient With Systemic Lupus Erythematosus

Authored by: Sharon Carrillo, Medical student, Louisiana State University School of Medicine, New Orleans, Louisiana. Dr. Carrillo is now a resident in anesthesiology with Ochsner Clinic Foundation, in New Orleans; and Alan D. Kaye, MD, PhD Professor and chairman, Department of Anesthesiology, Louisiana State University School of Medicine, New Orleans, Louisiana

Reviewed by: Elizabeth A.M. Frost, MD, Clinical professor, Department of Anesthesia, Mount Sinai Medical Center, New York, New York

REVIEW DATE: March, 2011

Read this article, reflect on the information presented, then go online and complete the lesson post-test and course evaluation before the termination date below. (CME credit is not valid past this date.) You must achieve a score of 80% or better to earn CME credit.

TIME TO COMPLETE ACTIVITY: 2 hours
RELEASE DATE: April 1, 2011
TERMINATION DATE: April 30, 2012

COPYRIGHT: This material is subject to copyright ©2011 Mount Sinai School of Medicine. All rights reserved.

Needs statement

Systemic lupus erythematosus (SLE) is an autoimmune, connective tissue disorder with multiple manifestations that complicate the functionality of key target organs. Persistent autoantibodies cause pathologic processes in systems that affect anesthetic practice. Anesthesiologists should be able to appropriately manage patients with SLE perioperatively. Drugs used in treating SLE and associated organ dysfunctions—particularly cardiac, neuromuscular, pulmonary, renal, hepatic, and hematologic—influence management of anesthesia.
Learning Objectives

At the end of this activity, the participant should be able to:

1. Define SLE.
2. Review the pathophysiology and anesthetic implications of SLE.
3. Describe the mucocutaneous and systemic manifestations seen in patients with SLE.
4. Explain the pathogenesis of SLE.
5. Apply appropriate preoperative testing and evaluation of patients.
6. Evaluate laboratory findings.
7. Present an anesthetic and analgesic plan.
8. Outline treatment options.
9. Cite the incidence and prevalence of SLE.
10. Anticipate, recognize, and manage likely perioperative complications.

Case History

A 32-year-old woman with long-standing SLE presented to the preoperative area with new-onset kidney failure. She was scheduled for surgery to create an arteriovenous shunt and place a temporary dialysis catheter. Electrolyte analyses were normal. Hemoglobin and hematocrit levels were 13 g/dL and 39.1%, respectively. Blood urea nitrogen and creatinine levels were 54 and 3.8 mg/dL, respectively. Vital signs were within normal limits and oxygen saturation by pulse oximetry (SpO2) on room air was 99%. The patient had received glucocorticoid therapy in the past. Recently, she had been taking 200 mg of celecoxib once daily for joint pain. She had never before undergone surgery.

Systemic lupus erythematosus (SLE) is a complex disorder characterized by dysregulation of pathogenic autoantibodies and immune complexes that leads to multisystem chronic inflammatory processes.1 SLE is not a rare condition; the estimated prevalence is 100 physician-diagnosed patients per 100,000 people. The disease may present at any age, although it primarily affects women of reproductive ages. The ratio of female to male patients is 9:1.

The prevalence of SLE is described as having an ethnic component, with black women affected 3 times more than whites2; in addition, blacks and Hispanics are reported to have higher rates of morbidity.3 Although a classical presentation of SLE has been described, clinically there are many variations of the disease. For example, elderly patients tend to have a less-severe form involving fewer organ systems overall; men usually experience less photosensitivity but have a higher rate of mortality.4,5

SLE was first documented in the Middle Ages when it was termed lupus (“wolf” in Latin) to describe the appearance of the classical facial (malar) rash. It was suggested that the rash resembled the fur on the forehead and muzzle of the wolf. Others have suggested that the disease may have been named after a veil (loup) used by women in France to cover facial blemishes. It was not until 1872 that Móric Kaposi, a Hungarian dermatologist, began to recognize and describe the systemic manifestations of the disease.6
A groundbreaking advance in the study of lupus was made when Malcolm Hargraves, a hematologist at Mayo Clinic in 1948, described the lupus erythematosus or LE cell found in the bone marrow of patients. Ten years later, George Friou, MD, developed a test using fluorescent antihuman globulin demonstrating the antigen–antibody reaction, thus advancing the immunologic study of the disease. Although SLE is largely attributed to autoimmune processes, its pathogenesis can be induced by drugs. This feature of SLE was discovered at the Cleveland Clinic in 1954, when a patient who was treated with hydralazine for hypertension subsequently developed SLE.

Clinical Manifestations

Considerable variation exists in the clinical presentation of SLE, ranging from acute features with the classical malar, erythematous “butterfly rash” to a progressive fatal illness most commonly caused by complications of renal, cardiovascular, pulmonary, and central nervous system (CNS) pathologies. Across all age groups, SLE is characterized by chronic, inflammatory, multiorgan symptoms caused by immune complexes and antibodies against cell surface molecules or serum constituents. The level of involvement of each organ system varies (Figure).

Mucocutaneous involvement is the most commonly reported clinical feature. It can appear as a rash (acute to chronic), alopecia, photosensitivity, and pathology of mucous membranes. These manifestations are secondary to activation of the membrane attack complex and immune complex deposition.

Musculoskeletal symptoms play a major role in the pathogenesis of SLE, affecting 53% to 95% of cases. These include arthritic, arthropathic, myositic, and necrotic processes. Some complications arise from immunoglobulin deposition; others may be a result of corticosteroid treatment or hematologic pathogenesis.

Hematologic involvement is a common characteristic of SLE. It is defined variously as anemia, leukopenia, thrombocytopenia, and antiphospholipid syndrome. Most patients with SLE have anemia secondary to many causes, including immune-mediated hemolysis, chronic disease, renal insufficiency, aplastic anemia, hypersplenism, blood loss, myelodysplasia, myelofibrosis, and medication use. Thrombocytopenia in these patients can result from platelet destruction, microangiopathic hemolytic anemia, hypersplenism, bone marrow suppression, and thrombopoietin antibodies. SLE is commonly complicated by leukopenia—either neutropenia or lymphocytopenia. Antiphospholipid syndrome may coexist with SLE, causing thrombosis and vascular
Renal symptoms affect 40% to 70% of patients. Mild, asymptomatic disorders of the urinary system affect many patients. A small percentage of cases progress to chronic renal insufficiency, a renal vasculitis syndrome, or severe lupus glomerulonephritis. Perhaps the most debilitating complications seen in SLE are those affecting the peripheral nervous system and CNS. The American College of Rheumatology (ACR) classifies these manifestations as neuropsychiatric systemic lupus erythematosus syndromes (NPSLE). The ACR has designated 19 syndromes within the NPSLE group. CNS syndromes include cerebrovascular disease, demyelinating syndrome, myelopathy, seizure disorder, psychosis, and aseptic meningitis. Peripheral nervous system syndromes include Guillain-Barré syndrome, mononeuropathy, myasthenia gravis, and cranial neuropathy.

Cardiovascular involvement is variable. Approximately 25% of patients with SLE develop pericarditis, whereas myocardial pathology is reported in less than 5% of patients. There is a correlation between early, severe atherosclerosis and SLE, leading to an increased prevalence of coronary artery disease, myocardial infarction, and stroke in these patients. Additionally, SLE increases the risk for valvular heart disease defined as aortic and mitral valve thickening, vegetations, regurgitation, and stenosis. Pulmonary involvement includes pleural, parenchymal, vascular, and muscular manifestations. The most common respiratory finding is pleuritic pain. Pleuritis is reported in more than 50% of patients with SLE. Clinically insignificant pleural effusions often are diagnosed. A more debilitating complication, although rare, is interstitial lung disease; its severity ranges from mild inflammation to extensive fibrosis. Reports of other types of parenchymal involvement include acute pneumonitis secondary to alveolar wall necrosis, bronchiolitis obliterans, pulmonary hypertension, and infection due to immunosuppression. Perhaps most worrisome is pulmonary hemorrhage secondary to inflamed capillaries, a relatively rare complication that has a mortality rate as high as 90%. A late pulmonary consequence of SLE is diaphragmatic pathology. This complication, known as “shrinking lung syndrome,” causes decreased total lung capacity and volume.

As supported by recent evidence, patients with SLE have an increased risk for cancer, including non-Hodgkin’s lymphoma and lung, breast, and cervical malignancies. Although there is an association between malignancy and SLE, the pathogenic mechanisms are unknown. It has been suggested that genetic and environmental factors play a role.

Pathogenesis

The pathogenesis of SLE is complex. Main factors include genetic patterns, gender, and environmental risks. Despite the different presentations of SLE, each patient shares a common dysregulation of autoantibody activity and an increased amount of immune complexes. Functionality at every level of the immune system is affected. Abnormalities in B cells, T cells, and immunoregulatory pathways have been described. The unchecked production of these self-destructing molecules causes widespread inflammatory processes leading to a common theme of damaged organ systems.

In SLE, many autoantibodies have a pathogenic role, targeting DNA, RNA, cell membrane structures, the cellular surface, and intracellular molecules. The most prevalent self-destructing molecules are within the antinuclear antibody (ANA) group. The hypothesis supported by increasing evidence is that
these antibodies originate from antinucleosomal antibodies. A main concern is the effect of the anti-DNA antibodies on renal parenchyma. The antibodies directly bind to or form complexes with various renal components, such as heparin sulfate proteoglycan, laminin, α-actinin, histone proteins, and glomerular basement membrane collagen. In SLE, anti-DNA molecules also attack the CNS. These antibodies target neurons and cause apoptosis, leading to cognitive impairment, altered mental status, and deterioration in mood.

Other autoantibodies specific to cellular types cause complications in patients. A common self-destructing molecule with up to 25% prevalence is the anti-Smith autoantibody, another ANA subtype. Highly specific for SLE, this autoantibody acts as an accelerator of disease. Similarly, anti-Ro autoantibody has a particularly important part in the pathogenesis of SLE and is associated with nephritis, dermatitis, vasculitis, neonatal lupus, and Sjögren’s syndrome.

With a variable severity of disease, some autoantibodies cause hematologic pathology; antibodies against platelets cause thrombocytopenia. More specifically, these antibodies are targeted against platelet cytoplasmic and surface components, including phospholipids and glycoproteins II and III. The immunoglobulin G non-Rhesus antibody against an erythrocyte surface molecule contributes to SLE by causing hemolysis and anemia. Additionally, anticardiolipin antibody and lupus anticoagulant target phospholipids, inducing vascular thrombosis.

Numerous genetic factors affect pathogenesis of SLE. Monozygotic twins appear to have an increased prevalence of SLE. First-degree relatives have a reported 29-fold relative risk. A predisposition to develop SLE is thought to involve expression of multiple genes and gene regions, including autoantibody production, several human leukocyte antigens, and non-leukocyte antigens.

The clinical picture of each patient differs according to unique and multiple stimuli, and the pathogenesis of the disease may be influenced by a number of environmental factors. These include exposure to viruses (most notably Epstein-Barr), ultraviolet light, certain medications (including procainamide, hydralazine, isoniazid, hydantoins, chlorpromazine, methyldopa, penicillamine, minocycline, tumor necrosis factor blockers, and interferon-α), and certain dietary components (Table 1).

Table 1. Environmental Factors Associated With Pathogenesis of SLE

<table>
<thead>
<tr>
<th>Factor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultraviolet light</td>
</tr>
<tr>
<td>Epstein-Barr virus</td>
</tr>
<tr>
<td>Estrogen and prolactin:</td>
</tr>
<tr>
<td>Predilection for females (8:1 ratio, female:male)</td>
</tr>
<tr>
<td>Lupus-inducing medications</td>
</tr>
<tr>
<td>Hydralazine</td>
</tr>
<tr>
<td>Procainamide</td>
</tr>
<tr>
<td>Isoniazid</td>
</tr>
<tr>
<td>Hydantoin</td>
</tr>
<tr>
<td>Chlorpromazine</td>
</tr>
<tr>
<td>Methyldopa</td>
</tr>
<tr>
<td>Penicillamine</td>
</tr>
<tr>
<td>Minocycline</td>
</tr>
<tr>
<td>Tumor necrosis factor-α inhibitors</td>
</tr>
<tr>
<td>Interferon-α</td>
</tr>
<tr>
<td>Dietary factors:</td>
</tr>
<tr>
<td>Alfalfa sprouts and related sprouted foods containing canavanine, pristane</td>
</tr>
<tr>
<td>Infectious agents other than Epstein-Barr virus</td>
</tr>
<tr>
<td>Bacterial DNA</td>
</tr>
<tr>
<td>Human retroviruses</td>
</tr>
<tr>
<td>Endotoxins, bacterial lipopolysaccharides</td>
</tr>
</tbody>
</table>

SLE, systemic lupus erythematosus
Adapted from reference 1.

Diagnosis

The ACR has established clinical criteria for the diagnosis of SLE (Table 2). A patient must exhibit at least 4 of the following 11 features: serositis, manifested as pleuritis or pericarditis; oral ulcers, including nasopharyngeal lesions; arthritis; photosensitivity; hematologic abnormalities, including
hemolytic anemia or any blood component deficiency; renal pathology, such as proteinuria or cellular casts; presence of antinuclear antibodies, such as anti-Smith, anti–double-stranded DNA (anti-dsDNA), anti-histone, anti-U1RNP, anti-Ro/SSA, or anti-La/SSB; immunologic disorders; neurologic disorders; malar rash; and discoid rash. These standard criteria confer 95% specificity and 85% sensitivity for SLE diagnosis.29

Diagnosing SLE may be a tedious process; however, many laboratory studies, imaging studies, and histologic tests are available. A Coombs’ test measures erythrocyte-specific antibodies in patients with anemia. Anti-histone screening may confirm drug-induced lupus in a patient whose prescription history is pertinent.1 Other tests are used to determine levels of certain biological markers to support the diagnosis. For example, an increased level of creatine kinase supports myositis; an elevated C-reactive protein level or erythrocyte sedimentation rate indicates an inflammatory state; and depressed levels of the complement proteins C3 and C4 suggest immune complex activity.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANA</td>
<td>Abnormal titer of ANA by immunofluorescence or equivalent assay at any time and in the absence of drugs known to be associated with drug-induced lupus syndrome.</td>
</tr>
<tr>
<td>Arthritis</td>
<td>Non-erosive arthritis involving 2 or more peripheral joints and characterized by tenderness, swelling, or effusion.</td>
</tr>
<tr>
<td>Discoid rash</td>
<td>Erythematous, raised patches with adherent keratic scaling and follicular plugging; atrophic scarring occurs in older lesions.</td>
</tr>
<tr>
<td>Hematologic disorder</td>
<td>Hemolytic anemia with reticulocytosis, or Leukopenia: <4,000/mm³, or Lymphopenia: <1,500/mm³, or Thrombocytopenia: <100,000/mm³ in the absence of contributing medications.</td>
</tr>
<tr>
<td>Immunologic disorder</td>
<td>Anti-DNA: antibody to native DNA in abnormal titer, or Anti-Smith: presence of antibody to Smith nuclear antigen, or Positive finding of antiphospholipid antibodies based on: 1) abnormal serum concentration of IgG or IgM antiphospholipid antibodies, 2) positive test result for lupus anticoagulant using a standard method, or 3) false-positive serologic test for syphilis known to be positive for at least 6 months and confirmed by Treponema pallidum immobilization or fluorescent treponemal antibody absorption test.</td>
</tr>
<tr>
<td>Malar rash</td>
<td>Fixed erythema, flat or raised, over the malar eminences, tending to spare the nasolabial folds.</td>
</tr>
<tr>
<td>Neurologic disorder</td>
<td>Seizures in the absence of contributing medication or known metabolic derangements (eg, uremia, acidosis, or electrolyte imbalance), Psychosis in the absence of contributing medication or known metabolic derangements (eg, uremia, acidosis, or electrolyte imbalance).</td>
</tr>
<tr>
<td>Oral ulcers</td>
<td>Oral or nasopharyngeal ulceration, usually painless, observed by a physician.</td>
</tr>
<tr>
<td>Photosensitivity</td>
<td>Skin rash as a result of unusual reaction to sunlight, by patient history or physician observation.</td>
</tr>
<tr>
<td>Renal disorder</td>
<td>Persistent proteinuria, >0.5 g per day, >3+ if quantification is not performed, or Cellular casts: may be red blood cell, hemoglobin, granular tubular, or mixed.</td>
</tr>
<tr>
<td>Sarcoïditis</td>
<td>Pleuritis: convincing history of pleuritic pain or rub heard by physician or evidence of pleural effusion, or Pericarditis documented by ECG or rub or evidence of pericardial effusion.</td>
</tr>
</tbody>
</table>

ACR, American College of Rheumatology; ANA, antinuclear antibody; ECG, electrocardiography; Ig, Immunoglobulin; SLE, systemic lupus erythematosus.

Adapted from reference 29.
The use of various molecular biology techniques to test for antibodies coupled with the clinical picture may distinguish SLE from other connective tissue disorders or determine coexisting disease. For example, the presence of anti-Ro/SSA or anti-La/SSB indicates Sjögren’s syndrome and is associated with neonatal lupus. Anti-RNP antibodies suggest scleroderma, whereas anti-cardiolipin antibodies have been described in the pathogenesis of antiphospholipid antibody syndrome (Table 3).

Prognosis and Treatment

Prior to advancements in screening tests, diagnostic laboratory studies, and treatment options, the prognosis was dismal for patients with SLE. Currently, the survival rate exceeds 90% in patients diagnosed 10 years previously. Although the pathogenesis of SLE is different for each patient, there is an established correlation of increased mortality with infection, accelerated atherosclerosis, CNS involvement, and renal disease. For the younger patient, infection seems to be a main cause of death, whereas complications related to atherosclerosis decrease survival in older patients. Etiologic factors that increase mortality include age greater than 50 years, male gender, and low socioeconomic status.

The treatment and management of patients with SLE varies. Disease severity and organ involvement determine a suitable treatment regimen. Treatment is induced during relapses in an effort to prevent exacerbations. Patients with mild SLE, defined by musculoskeletal and cutaneous involvement, generally are treated with antimalarials, glucocorticoids, and nonsteroidal anti-inflammatory agents. Patients in whom there is major organ involvement, including renal, hematologic, pulmonary, cardiac, and nervous systems, are considered to have moderate to severe SLE. These patients benefit from more intense treatment with immunosuppressive, cytotoxic, and biologic agents. Clinical guidelines set forth by the ACR recommend drug therapy with azathioprine, mycophenolate mofetil, cyclophosphamide, methotrexate, and cyclosporine, with appropriate monitoring for toxicity. In addition, a new drug belimumab, a monoclonal antibody, was recently FDA-approved for treating patients with SLE.

Anesthetic Considerations

Preoperative Assessment

Because of extensive, multiple organ dysfunction that can develop in SLE, the preoperative assessment of a patient with this disease may be extensive. Patient history, thorough physical examination, laboratory testing, and imaging are indicated. Cardiovascular function should be assessed with chest radiography, echocardiography, and electrocardiography to determine the presence of pericarditis, endocarditis, myocarditis, congestive heart failure, and conduction blocks.
In addition to cardiovascular evaluation, pulmonary function and arterial blood gas tests should be conducted if respiratory symptoms are present. Other complications such as lupoid hepatitis can be uncovered by liver function tests, a gastrointestinal series, and determination of albumin/globulin ratios and bilirubin levels. Anemia, thrombocytopenia, and leukopenia can be assessed by hematologic studies, including complete blood count, platelet count, prothrombin time, and partial thromboplastin time.

For CNS involvement, electroencephalography and a computed tomography scan may be necessary. Renal involvement can be evaluated by urinalysis, renal ultrasound and scan, blood urea nitrogen level, and creatinine, albumin, and total serum protein levels. Identifying specific organ dysfunctions and the clinical picture will determine the appropriate anesthetic plan (Table 4).

Table 4. Preoperative Assessment of the Patient With SLE

<table>
<thead>
<tr>
<th>System</th>
<th>Effects</th>
<th>Assessment by History</th>
<th>Physical Examination</th>
<th>Tests</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiovascular</td>
<td>Pericarditis, Endocarditis, Myocarditis, CHF, Conduction blocks</td>
<td>Chest pain, Palpitations</td>
<td>Murmur, Effusion, Diastolic noncompliance, Pericardial friction rub</td>
<td>ECG, CXR, Echocardiography</td>
</tr>
<tr>
<td>Respiratory</td>
<td>Infiltrates, Restrictive PE, 1:1 gradient, Atelectasis</td>
<td>Pleuritic pain, Dyspnea, Cough, Hemoptysis</td>
<td>Friction rub, Effusion, Cyanosis, Normal peak flow</td>
<td>CXR, PFTs, ABGs</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>Perforated viscus, Pseudo-obstruction, Liver congestion, Lupoid hepatitis</td>
<td>Nausea/vomiting, Peritonitis, Pancreatitis, Abdominal pain, Illness</td>
<td>Dilated loops of bowel, Parotoneal tear, Hepatomegaly, Jaundice</td>
<td>Gastrointestinal series, LFTs, Bilirubin level, A/G ratio</td>
</tr>
<tr>
<td>Hematologic</td>
<td>Hemorrhage, Thromboembolism, Anemia</td>
<td>Bruising, Thrombosis</td>
<td>Lymphopenia, Splenomegaly, Anemia</td>
<td>CBC, Platelet count, PT, PTT</td>
</tr>
<tr>
<td>Renal</td>
<td>Glomerulitis, Necrotizing syndrome, Renal insufficiency, Renal failure</td>
<td>Polyuria, Oliguria, Hematuria, Fever</td>
<td>Costephrenic tenderness, Edema</td>
<td>Urinalysis, Renal US, Renal scan, BUN, Cr, TP, albumin</td>
</tr>
<tr>
<td>CNS</td>
<td>Confusion, Hallucinations, Psychoses, Seizures</td>
<td>Paranoid states, Hyperirritability, Numbness, Hemiparesis</td>
<td>Psychosis, Nystagmus, palsy, diplopia, Aphasia, Peripheral neuropathy</td>
<td>EEG, CT scan, Neurologic, psychiatric evaluations</td>
</tr>
<tr>
<td>Musculoskeletal and dermal</td>
<td>Vasculitis, Symmetrical arthritis, Joint immobility, Aseptic necrosis</td>
<td>Photosensitivity, Atrophic/scared lesions, Erythrosis, Pupura, Joint pain, Immobility</td>
<td>Maler or butterfly rash, Perioral ulceration, Reduced range of motion, Hip pain</td>
<td>Hip x-rays, Antinuclear antibody</td>
</tr>
</tbody>
</table>

A/G, albumin/globulin; ABGs, arterial blood gas; A/G, albumin/globulin; BUN, blood urea nitrogen; CBC, complete blood count; CHF, congestive heart failure; CNS, central nervous system; Cr, creatinine; CT, computed tomography; CXR, chest x-ray; ECG, electrocardiography; EEG, electroencephalography; LFT, liver function test; PFT, pulmonary function test; PT, prothrombin time; PTT, partial thromboplastin time; SLE, systemic lupus erythematosus; TP, total protein; US, ultrasound

Intraoperative Assessment

There are many perioperative issues to consider in the patient with SLE—from organ pathology to anatomic change. As mentioned, multiple manifestations of the disease may alter anesthetic management of the patient. Renal or hepatic involvement may affect the metabolism and efficacy of common drugs, including IV and inhaled anesthetics, analgesics, neuromuscular inhibitors, cholinesterase inhibitors, and muscarinic antagonists. Patients treated with cyclophosphamide may require a longer period of anesthesia induction because of an inhibitory effect on cholinesterase that may lengthen the response to succinylcholine. Intubation, extubation, and maintaining an airway may be difficult in some patients because of SLE-induced upper airway obstruction and laryngeal involvement.

Airway Maintenance

Airway protection is a major concern in all patients undergoing anesthesia. Patients with SLE may have mucosal ulceration, cricoarytenoid arthritis, laryngeal pathology including recurrent laryngeal nerve palsy, or temporomandibular joint dysfunction that results in a difficult intubation. Avoiding intubation when possible or using fiberoptic techniques are alternative approaches.

Pulmonary

In patients with SLE, respiratory involvement may include acute pneumonitis, chronic alveolar infiltrates, and recurrent infectious pneumonia. Perioperatively, pulmonary function and oxygenation should be carefully assessed. Avoidance of hypoxia, hypercapnia, and catecholamine release maintains pulmonary blood flow and reduces pulmonary vascular resistance. Arterial cannulation for blood gas analyses, and placement of a pulmonary artery catheter to assess pulmonary hypertension, may be indicated. A rare complication in these patients is alveolar hemorrhage, in which case pulmonary capillary exchange, oxygenation, and airway pressure must be monitored; suction should be readily available.

Renal

Glomerulitis, nephrotic syndrome, renal insufficiency, and renal failure may develop. Renal involvement poses a significant challenge in patients with SLE and may alter standard administration of anesthetics. Drugs requiring renal excretion, including some opioids, benzodiazepines, and neuromuscular blocking agents, may accumulate. The lingering, toxic metabolites lead to prolonged sedation, paralysis, and an increased recovery period. Additionally, the kidneys or other organ systems may be further damaged. In cases of extreme endorgan damage, the use of remifentanil and cisatracurium—both metabolized via processes that are end organ–independent—is indicated.

Cardiovascular

Premature and accelerated atherosclerosis increases the risk for cardiovascular disease. Patients are predisposed to potentially catastrophic events such as intraoperative myocardial infarction. Every effort should be made to maintain hemodynamic stability.
Management of the Case Presented

A detailed medical history of the patient was obtained, and a physical examination completed. Her airway was characterized as Mallampati class II with good cervical range of motion. Her lungs were clear to auscultation; heart sounds were regular without murmurs. Other findings of the physical examination were within normal limits, except for alopecia, which was moderate.

After a discussion with the patient about the risks and benefits of general anesthesia, regional anesthesia, and supplemented local anesthesia, the latter was chosen. After IV administration of 2 mg of midazolam and 50 mcg of fentanyl, the surgeon locally injected a mixture of bupivacaine and lidocaine. A propofol infusion of 40 mcg/kg per minute was started. The patient also received 4 mg of ondansetron. The procedure lasted 45 minutes. The patient was discharged to undergo dialysis, and later to home.

Conclusion

SLE is a complicated autoimmune disease with variable systemic manifestations. Because of the complexity and potentially wideranging clinical presentations of SLE, anesthetic management of patients is challenging. The inherent heterogeneity of SLE necessitates extensive preoperative assessments of patients, in addition to obtaining detailed histories and physical examinations. Careful anesthetic planning and intraoperative monitoring of all affected organ systems—particularly renal, pulmonary, and cardiovascular function—are required.

Dr. Elizabeth A.M. Frost, who is the editor of this continuing medical education series, is clinical professor of anesthesiology at The Mount Sinai School of Medicine in New York City. She is the author of Clinical Anesthesia in Neurosurgery (Butterworth-Heinemann, Boston) and numerous articles. Dr. Frost is past president of the Anesthesia History Association and former editor of the journal of the New York State Society of Anesthesiologists, Sphere. She is also editor of the book series based on this CME program, Preanesthetic Assessment, Volumes 1 through 3 (Birkhäuser, Boston) and 4 through 6 (McMahon Publishing, New York City).
REFERENCES

18. Badsha H, Teh CL, Kong KO, Lian TY, Chng HH. Pulmonary hemorrhage in systemic lupus erythematosus. Semin...
Lesson 291: PreAnesthetic Assessment of the Patient With Systemic Lupus Erythematosus

Lesson 291: PreAnesthetic Assessment of the Patient With Systemic Lupus Erythematosus

Visit www.mssm.procampus.net today for instant online processing of your CME post-test and evaluation form. There is a registration fee of $15 for this non–industry-supported activity. For assistance with technical problems, including questions about navigating the Web site, call toll-free customer service at (888) 345-6788 or send an e-mail to Customer.Support@ProCEO.com. For inquiries about course content only, send an e-mail to ram.roth@mssm.edu. Ram Roth, MD, is director of PreAnesthetic Assessment Online and assistant professor of anesthesiology at The Mount Sinai School of Medicine, New York, NY.

Post-test

1. How is the diagnosis of systemic lupus erythematosus (SLE) established?
 a. By a positive test for serum antinuclear antibody
 b. Only by the presence of lupus nephritis
 c. By the coexistence of 4 of the 11 criteria set forth in the American College of Rheumatology guidelines
 d. By the presence of the characteristic malar rash

2. Which is the most common clinical feature of SLE?
 a. Mucocutaneous involvement
 b. Renal involvement
 c. Pulmonary involvement
 d. Cardiovascular involvement

3. Which demographic group has the highest prevalence of SLE?
 a. Hispanic female
 b. White male
 c. Black female
 d. None of the above

4. SLE is distinguished by the presence of which antibody?
 a. Antimitochondrial
 b. Anti-basement membrane
 c. Antinuclear
 d. Antiphospholipid

5. Pulmonary abnormalities associated with SLE include all of the following, except:
 a. intra-alveolar blood
 b. necrotizing granulomas
 c. atelectasis
 d. alveolar infiltrates
6. All of the following agents may be used in the treatment of SLE, except:
 a. procainamide
 b. cyclophosphamide
 c. belimumab
 d. methotrexate

7. In patients with SLE, the following are important anesthetic considerations, except:
 a. upper airway obstruction
 b. current medications
 c. genetic studies
 d. kidney function

8. Which of the following DOES NOT play an extensive role in the pathogenesis of SLE?
 a. Gender
 b. Epstein-Barr virus
 c. Alfalfa sprouts
 d. Ultraviolet B light

9. All of the following drugs have shown evidence of causing lupus, except:
 a. hydralazine
 b. isoniazid
 c. methyldopa
 d. cyclosporine

10. The presence of which antibody is characteristic of drug-induced lupus?
 a. Anti-histone
 b. Anti-Ro
 c. Anti-La
 d. Anti-DNA